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Subharmonic motion of particles in a vibrating tube

Jysoo Lee*

Benjamin Levich Institute and Department of Physics, City College of the City University of New York, New York, New York 1
~Received 10 November 1997!

We study the motion of strongly inelastic particles in a narrow vibrating tube using molecular-dynamics
simulation. At low frequency of the vibration, we observe qualitative changes of the motion as the depth of the
pile increases. The center of mass of the particle cloud can be described by a superposition of modes of
different frequencies. For certain values of the depth, a single mode dominates. The frequency of the dominant
mode is 1/2, 1/3, or 1/1 of the vibration. We suggest that the behavior can be understood in terms of a new time
scalet, reflecting the recompaction time for a finite-depth pile.@S1063-651X~98!50208-5#

PACS number~s!: 46.30.My, 05.40.1j, 46.10.1z, 63.50.1x
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Granular material under vibration has been a cons
source of interesting phenomena, such as convection,
formation, and surface waves@1–5#. When the depth is suf
ficiently small ~a shallow bed!, the motion of a pile under
vibration is qualitatively the same as that of a single lay
As the depth increases, changes are expected, which r
several interesting questions. For example, at what de
does the motion start to significantly differ from that of
single layer? Do the changes occur gradually or sudde
with an increase of the depth?

These questions are also closely related to some of
posed mechanisms for parametric waves and convec
cells observed in vibrated granular material. For example
estimate of the onset of the parametric waves, given in R
@6#, is in excellent agreement with experiment. The estim
tion is based on the motion of a single particle. Also rela
is an argument for convection, which involves a bifurcati
from a single-particle motion@7#. A systematic study of the
depth dependence of the motion is necessary to check
validity and limitations of such mechanisms.

There have been several studies on the state of gran
material under vibration. Cle´ment and Rajchenbach me
sured the density, velocity, and temperature fields of the t
dimensional packing of beads@8#. Luding et al. studied the
density field of the one- and two-dimensional systems,
found a different scaling@9#, which was confirmed by War
et al. @10# and Lee@11#. Lan and Rosato measured the de
sity and temperature fields of the three-dimensional sys
@12#.

While these works focus on the dependence of the fie
on the frequency and amplitude of the vibration, there
few works specifically on the effect of the depth of a pi
Thomaset al. studied the system in three dimensions, foc
ing on a shallow bed@13#, and found four distinct behavior
as the depth increases. They are~1! ‘‘Newtonian-I,’’ where
the particles are bouncing so randomly that there is li
change in the density field during a cycle;~2! ‘‘Newtonian-
II,’’ where a dense layer of particles forms during one part
each cycle;~3! ‘‘coherent-expanded,’’ where the particle
move as a coherent mass; and~4! ‘‘coherent-condensed,’’
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where the particles move as a coherent mass but remain c
pact through a cycle. Also, Brennenet al. studied the effect
of the depth as well as the amplitude on the expansion
pile @14#. They found at least one sudden change in the
pansion at a certain amplitude, whose value changes with
depth.

In this paper, we systematically study the depth dep
dence for various combinations of the amplitude and f
quency of the vibration. We use the molecular-dynam
~MD! simulation method, which provides detailed inform
tion on the motion of individual particles as well as tim
averaged fields.

In the experiment of Thomaset al., the motion of a pile
approaches that of a single block as the depth increases@13#.
We are interested to know whether this is the only poss
dependence. Here, we choose to use strongly inelastic
ticles. By doing so, we can study the motion in the oth
extreme, since the typical value ofe used in experiments is
rather large@15#. Here,e is the coefficient of restitution be
tween the particles. Furthermore, one may argue that a
with largee behaves like a shorter pile with smalle, since a
pile with largee can be divided into blocks, each of whic
acts like a single particle.

We find that the system shows rich and unexpected
pendence on the depth. In general, several modes of diffe
frequencies are necessary to describe the resulting mo
However, at specific values of the depth, one of them do
nates. The dominant mode is, besides single-particle mot
always a subharmonic (1/2 or 1/3) of the frequency of vib
tion. We suggest that these behaviors result from an a
tional recompaction time scalet introduced in the system
When an initially compact pile is launched from the botto
it takes timet to be compact again after subsequent co
sions. If t becomes comparable to or even larger than
periodT of the vibration, we expect the motion of the pile
be significantly different from that of a single layer. A dom
nant mode seems to occur whent is close to an integer
multiple of T. At a somewhat higher frequency (100 Hz!, a
pile moves as a single block andt becomes negligible.

The simulations are done in two dimensions with dis
shaped particles, using a form of interaction due to Cund
and Strack@16,17#. Particles interact only by contact, and th
force between two such particlesi and j is the following. Let
al
R1218 © 1998 The American Physical Society
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FIG. 1. Power spectraP( f ) of the center of mass of the particles. The five curves correspond, from bottom to top, toH51, 8, 12, 16,
and 28. The curves have been offset for clarity. Here,f 510 andG52.
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the coordinate of the center of particlei ( j ) be RW i (RW j ), and
rW5RW i2RW j . The normal componentF j→ i

n of the force acting
on particlei from particle j is

F j→ i
n 5kn~ai1aj2urWu!2gme~vW •n̂!, ~1!

whereai (aj ) is the radius of particlei ( j ), andvW 5drW/dt.
Here,kn is the elastic constant,g the friction coefficient, and
me is the effective mass,mimj /(mi1mj ). The shear compo
nentF j→ i

s is given by

F j→ i
s 52sgn~ds!min~ksudsu,muF j→ i

n u!, ~2!

where m is the friction coefficient,ds the total shear dis-
placement during a contact, andks is the elastic constant of
virtual tangential spring. The shear force applies a torqu
the particles, which then rotate.

Particles can also interact with walls. The force a
torque on particlei in contact with a wall are given by~1!–
~2! with aj50 andme5mi . Also, the system is in a vertica
gravitational fieldgW . The interaction parameters used in th
study are fixed as follows, unless otherwise specified:kn
5ks553104,g5103, and m50.2. In order to avoid arti-
facts of a monodisperse system~e.g., hexagonal packing!, we
choose the radius of the particles from a Gaussian distr
tion with the mean 0.1 and the width 0.02. The density of
particles is 5. Throughout this paper, cgs units are impli

We put the particles into a two-dimensional rectangu
box. The box consists of two horizontal~top and bottom!
plates which oscillate sinusoidally along the vertical dir
tion with given amplitudeA and frequencyf . The width and
height of the box is 1 and 104, respectively. The small width
is used to suppress the surface waves@6#. We apply a peri-
odic boundary condition in the horizontal direction.

The coefficient of restitution between the particlesepp ,
determined from the above interaction parameters, is
31022, and the coefficient between the particles and
wall is epw 2.531023. The particles are thus almost com
pletely inelastic. We have studied the motion of a sin
to
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e
.
r

-
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particle for several values ofA with f 510, and find good
agreement in the predictions of Mehta and Luck@18#.

We measure the time seriesY(t) of the center of mass o
the particles and compare it with that of a single particle.
Fig. 1, we show the power spectrumP( f ) of the series for
several values ofH. Here,f 510,G[A(2p f )2/g52, andH,
the total number of layers in a pile, is 1, 8, 12, 16, and
~from bottom to top!. The measurements are made for 2
cycles. The motion of a single particle with these parame
is known to have the same period as the vibration@19#. This
is confirmed by the fact thatP( f ) with H51 is strongly
dominated by the mode atf 510.

For larger values ofH, however, the behavior become
quite different. AsH increases, thef 510 mode becomes les
dominant (H;8), and then a 1/2 subharmonic mode b
comes dominant (H;12). By further increasingH, no clear
dominant mode is present (H516), and a 1/2 subharmoni
mode dominates again (22,H,30). Thus several mode
are always present in the spectrum, and one of them do
nates around specific values ofH. We find that these quali-
tative features of the power spectrum seem to be insens
to small changes of the width, coefficients of restitution, a
elastic constant.

We now investigate the mechanism for the behaviors.
start with the observation that the particles in a box do
remain as a single block, but tend to be dispersed. We in
duce quantityR(t), which characterizes the dispersion
R(t)[A^y2&2^y&2. Hereyi(t) is the vertical coordinate o
particle i and the average is taken over the particles. W
describe the motion of the pile using their effective cen
Y(t) and effective ‘‘radius’’R(t).

The radiusR(t) does vary with time. It remains smal
while the particles are resting on the bottom. When they
launched into the air,R(t) initially increases, then decrease
after they collide with the bottom. This procedure introduc
additional time scalet, the time needed for a compact pile
be compact again after launching and subsequent landin~s!.
One can think oft as ‘‘relaxation time’’ for the pile. Whent
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becomes comparable to or even larger thanT, we expect that
the motion of the pile can no longer be described by tha
a single particle.

To make the idea more quantitative, we measuret. From
the time seriesR(t), we locate the times at whichR(t)
reaches local minima. The interval between succes
minima is defined to bet. One should consider only th
flights of initially compact piles. Some of the local minim
correspond to a partially expanded state and should no
used. To take that into account, I discard values oft when
R(t) at the launching is larger than 20% of the maximu
R(t). We calculate distributionD(t) from the resulting set
of t. The resultingD(t) seems to be insensitive to a sma
variation in the cutoff.

When the motion of the pile is periodic, the particles a
launched at a specific phase of the vibration. One thus
pects thatD(t) consists of a few sharp peaks. When t
motion becomes more chaotic, the particles are launched
more irregular phase. The relaxation timet becomes more
random and the peaks ofD(t) broaden out. Thus one ca
think of D(t) as a representation ofP( f ) in temporal do-
main. Sharply peakedP( f ) corresponds to sharply peake
D(t), broadP( f ) to broadD(t).

We now quantify the dominance of a single mode. W
define

Q2[
1

tmax2tmin
E

tmin

tmax
„D~t!2D̄…

2dt, ~3!

where

D̄[
1

tmax2tmin
E

tmin

tmax
D~t!dt. ~4!

Here,tmin (tmax) is the minimum~maximum! of measured
t. The quantityQ measures deviation from a uniform distr
bution. If the motion of the pile is periodic,D(t) consists of
a few sharp peaks andQ is large. For a chaotic motion, w
expect smallQ. In the top part of Fig. 2, we showQ mea-
sured for the parameters of Fig. 1. The curve consists

FIG. 2. QuantityQ ~top! that characterizes the dominance of

single mode and the relaxation timet̄ ~bottom! are shown for sev-
eral values ofH. The curve ofQ has been offset and rescaled f
clarity. Parameters are identical to those of Fig. 1. There are t
peaks inQ at H51 ~single-particle motion!, 12 ~1/2 subharmonic!,

and broad peak nearH528 ~1/2 subharmonic!. Note thatt̄ is close
to 2T when subharmonic modes dominate.
f

e

be

x-

t a

of

three peaks forming a ‘‘w’’ shape. The number of the pea
and their locations (H51,12,28), are what are expected fro
Fig. 1. Note that the system shows broad resonances ar
H528. Such quality of agreement seems to be typical, wh
demonstrates the value ofQ. We also calculate the relativ
contributions ofP( f o) and P( f o/2) to the power spectrum
P( f ), wheref o is the driving frequency. These contribution
also peak around the same locations of the peaks ofQ.

The key quantity that can be calculated fromD(t) is t̄

@20#. At the bottom of Fig. 2, we showt̄ measured using the
parameters of Fig. 1. One can see thatt̄ is indeed larger than
the period of the vibrationT50.1 for mostH. Furthermore,
notice that the dominances of a single mode seem to o
when t̄ is close to an integer multiple ofT, besides smallH
~single-particle motion!. The dominance nearH528 occurs
when t̄ is close to 2T, where the frequency of the dominan
mode is also 2T. However, the dominance nearH512 oc-
curs near, but not exactly at, wheret̄ becomes 2T (H
;10).

Based on these observations, we propose a poss
mechanism for the dominance. When the pile, launched fr
the bottom, comes back to collide with the bottom, there
still significant dispersion, and the pile becomes comp
again only aftert̄. When t̄ is an integer multiple ofT, we
expect the pile to repeat the same sequence of motions. T
t̄5nT is a condition for a single-mode dominance, and t
period of the motion isnT.

The proposed mechanism gets further support by study
the motion for different values ofG. In Fig. 3, we showQ

and t̄ measured forG53 while the other parameters rema
the same. One can see four dominances: one particle mo
at H51, two 1/2 subharmonic (H56, and around 26! mo-
tions, and an one 1/3 subharmonic (H514) motion. Not
only the observed periods~1/1, 1/2, and 1/3!, but also the
order they appear~1/1, 1/2, 1/3, and 1/2, asH increases!
seems to be rather complex. These can be understood e
by looking at the correspondingt̄. The value oft̄ is indeed
close to 2T nearH56, 26, where a 1/2 subharmonic mod
dominates. However, there is only one dominance of
subharmonic mode nearH514, compared to two expecte
from t̄ (H;12 and 16!. It is possible that the two nearb

ee

FIG. 3. QuantitiesQ ~top! and t̄ ~bottom! are shown forG53.
Other parameters are the same as Fig. 2. There are four peaksQ
at H51 ~single-particle motion!, 6 ~1/2 subharmonic!, 14 ~1/3 sub-

harmonic!, and around 26~1/2 subharmonic!. Note thatt̄ is close to
2T (3T) when a 1/2~1/3! subharmonic mode dominates.
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dominances merge to form a single one. AsG increases to 4
and 5, all of the dominances can again be explained fromt̄.
No dominance with a period larger than 3T is observed. As
G is further increased, the dominance becomes much
clear.

We also study the effect off . We changef to 20 and 100
while keeping the other parameters fixed. Forf 520 andG
52, Q assumes a ‘‘w’’ shape as in Fig. 2. The dispersion
the file for f 520 is smaller than that off 510 at the sameG.
The decrease is more significant forf 5100, where the sys
tematic variation ofR(t) is too small to be seen. This de
crease is not unexpected. The expansion of the pile
shown to scale asA f rather thanG @9–11#. Therefore, the
value ofA f decreases asf increases for fixedG.

We argue that most aspects of the seemingly comp
depth dependence can be explained in terms oft̄. However,
there are a few remaining questions. First, the origin of
discrepancy on the location of dominances remains uncl
Second, it is not clear why only a 1/n subharmonic mode
with integern is observed. In principle,t̄ can be made suit
able for, e.g., a 2/3 mode by carefully tuningH.
.
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Finally, we discuss the conditions for observing the su
harmonic motion in an experiment. The amplitude and f
quency used in the experiments of Thomaset al. are compa-
rable to our simulations@13#, but their results are quite
different. The difference, we believe, is the coefficient
restitution. The typical value ofe used in the present simu
lations is less than 0.1, while that of a typical experimen
larger than 0.8@15#. In order to check the idea, we repeat t
simulation withe;0.8 for f 510 andG52. The motion of
the pile is indeed chaotic at a small depth, and it becom
more coherent at a larger depth, just as in the experimen
is possible that the motion of a pile with smalle is similar to
that of a taller pile with largere. In such a case, subharmon
motion could be observed in a taller pile with largee.
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