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Subharmonic motion of particles in a vibrating tube
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We study the motion of strongly inelastic particles in a narrow vibrating tube using molecular-dynamics
simulation. At low frequency of the vibration, we observe qualitative changes of the motion as the depth of the
pile increases. The center of mass of the particle cloud can be described by a superposition of modes of
different frequencies. For certain values of the depth, a single mode dominates. The frequency of the dominant
mode is 1/2, 1/3, or 1/1 of the vibration. We suggest that the behavior can be understood in terms of a new time
scaler, reflecting the recompaction time for a finite-depth pi©1063-651X98)50208-3

PACS numbd(s): 46.30.My, 05.40+j, 46.10+2z, 63.50:4x

Granular material under vibration has been a constanwhere the particles move as a coherent mass but remain com-
source of interesting phenomena, such as convection, hegact through a cycle. Also, Brennet al. studied the effect
formation, and surface wav¢$—5]. When the depth is suf- of the depth as well as the amplitude on the expansion of a
ficiently small (a shallow bell the motion of a pile under pile [14]. They found at least one sudden change in the ex-
vibration is qualitatively the same as that of a single layerpansion at a certain amplitude, whose value changes with the
As the depth increases, changes are expected, which raisgspth.
several interesting questions. For example, at what depth In this paper, we systematically study the depth depen-
does the motion start to significantly differ from that of a dence for various combinations of the amplitude and fre-
single layer? Do the changes occur gradually or suddenlguency of the vibration. We use the molecular-dynamics
with an increase of the depth? (MD) simulation method, which provides detailed informa-

These questions are also closely related to some of Prgjon on the motion of individual particles as well as time-
posed mechanisms for parametric waves and convectiog\eraged fields.

cells observed in vibrated granular material. For example, an |, the experiment of Thomast al, the motion of a pile

estimate of the onset of the parametric waves, given in Refapproaches that of a single block as the depth incrdasés

[.6]’ IS 1N excellent agree_ment W'th expenm_ent. The eStIma'We are interested to know whether this is the only possible
tion is based on the motion of a single particle. Also related

) . LY . .~ “dependence. Here, we choose to use strongly inelastic par-
is an argument for convection, which involves a blfurcauont. I By doi tudv th tion in the oth
from a single-particle motiofi7]. A systematic study of the Icles. By doing so, we can study the maotion In the other
depth dependence of the motion is necessary to check gfgtreme, since the typlcgl value efq;ed n expe.nm-ents IS
validity and limitations of such mechanisms. rather Iarge[lS]. Here,e is the coefficient of restitution be- .
There have been several studies on the state of granuliV€en the particles. Furthermore, one may argue that a pile
material under vibration. Cieent and Rajchenbach mea- with largee behaves like a shorter pile with small since a
sured the density, velocity, and temperature fields of the twoPile with largee can be divided into blocks, each of which
dimensional packing of bead8]. Luding et al. studied the acts like a single particle.
density field of the one- and two-dimensional systems, and We find that the system shows rich and unexpected de-
found a different scalin9], which was confirmed by Warr pendence on the depth. In general, several modes of different
et al.[10] and Lee[11]. Lan and Rosato measured the den-frequencies are necessary to describe the resulting motion.
sity and temperature fields of the three-dimensional systertlowever, at specific values of the depth, one of them domi-
[12]. nates. The dominant mode is, besides single-particle motion,
While these works focus on the dependence of the fieldglways a subharmonic (1/2 or 1/3) of the frequency of vibra-
on the frequency and amplitude of the vibration, there ardion. We suggest that these behaviors result from an addi-
few works specifically on the effect of the depth of a pile. tional recompaction time scale introduced in the system.
Thomaset al. studied the system in three dimensions, focus-When an initially compact pile is launched from the bottom,
ing on a shallow bed13], and found four distinct behaviors it takes timer to be compact again after subsequent colli-
as the depth increases. They &t¢ “Newtonian-1,” where  sions. If 7 becomes comparable to or even larger than the
the particles are bouncing so randomly that there is littleperiodT of the vibration, we expect the motion of the pile to
change in the density field during a cycl® “Newtonian-  be significantly different from that of a single layer. A domi-
II,” where a dense layer of particles forms during one part ofnant mode seems to occur whenis close to an integer
each cycle;(3) “coherent-expanded,” where the particles multiple of T. At a somewhat higher frequency (100 )Ha
move as a coherent mass; a#] “coherent-condensed,” pile moves as a single block andbecomes negligible.
The simulations are done in two dimensions with disk-
shaped particles, using a form of interaction due to Cundall
*Present address: Center for Theoretical Physics, Seoul Nationaind StracK16,17). Particles interact only by contact, and the
University, Seoul 151-742, Korea. force between two such particlesndj is the following. Let
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FIG. 1. Power spectr®(f) of the center of mass of the particles. The five curves correspond, from bottom to tép; 108, 12, 16,
and 28. The curves have been offset for clarity. Hérel0 andl'=2.

the coordinate of the center of partidléj) beR; (R;), and  particle for several values ok with =10, and find good
F=R— ﬁj . The normal componeri”_; of the force acting agreement in the predictions of Mehta and L{itg].

j—i

on particlei from particlej is We measure the time se_riéﬁ:t) of the cenFer of mass of
the particles and compare it with that of a single particle. In
F?ﬂi:kn(ai+aj_|F|)_ 7me(5. n, (1) Fig. 1, we show the power spectruR(f) of the series for

several values dfl. Here,f=10I'=A(2#f)?%/g=2, andH,
wherea; (a;) is the radius of particlé (j), andv=dr/dt.  the total number of layers in a pile, is 1, 8, 12, 16, and 28
Here,k, is the elastic constany; the friction coefficient, and (from bottom to top. The measurements are made for 200
me is the effective massy;m; /(m;+m;). The shear compo- cycles. The motion of a single particle with these parameters

nentF; ; is given by is known to have the same period as the vibrafit®l. This
. ) . is confirmed by the fact thalP(f) with H=1 is strongly
F3_i=—sgr(ds)min(kg| 5s|, u|Fi_i]), (2 dominated by the mode &t= 10.

For larger values oH, however, the behavior becomes
quite different. AH increases, thé=10 mode becomes less
virtual tangential spring. The shear force applies a torque tgommant H.NS)’ and then a 1/2 §ubharmon|c mode be-
the particles, which then rotate. comes domlnant!-ﬂ~12). By further increasingd, no clear.

Particles can also interact with walls. The force anddominant mode is presenH(=16), and a 1/2 subharmonic

torque on particlé in contact with a wall are given bgl)— mode dominates again (H<30). Thus several modes _
(2) with a;=0 andm,=m; . Also, the system is in a vertical are always present. in the spectrum, gnd one of them d.0m|-
gravitational fieldg. The interaction parameters used in this nates around specific values it We find that these quali-

study are fixed as follows, unless otherwise specified: tative features of the power spectrum seem to be insensitive
—k,=5x10% y=10% and x=0.2. In order to avoid arti- to small changes of the width, coefficients of restitution, and
S 1 ’ e

facts of a monodisperse systéeg., hexagonal packingve ~ €lastic constant. - _ _
choose the radius of the particles from a Gaussian distribu- /& now investigate the mechanism for the behaviors. We
tion with the mean 0.1 and the width 0.02. The density of theStart with the observation that the particles in a box do not
particles is 5. Throughout this paper, cgs units are implied.remain as a single block, but tend to be dispersed. We intro-
We put the particles into a two-dimensional rectangularduce quantityR(t), which characterizes the dispersion as
box. The box consists of two horizontéop and bottorn R(t)=(y?) —(y)?. Herey;(t) is the vertical coordinate of
plates which oscillate sinusoidally along the vertical direc-particlei and the average is taken over the particles. We
tion with given amplitudeA and frequency. The width and  describe the motion of the pile using their effective center
height of the box is 1 and fprespectively. The small width Y(t) and effective “radius”R(t).

where u is the friction coefficient,8s the total shear dis-
placement during a contact, akglis the elastic constant of a

is used to suppress the surface wal@s We apply a peri- The radiusR(t) does vary with time. It remains small,
odic boundary condition in the horizontal direction. while the particles are resting on the bottom. When they are
The coefficient of restitution between the particigs,, launched into the aifR(t) initially increases, then decreases

determined from the above interaction parameters, is 8.@fter they collide with the bottom. This procedure introduces
x 1072, and the coefficient between the particles and theadditional time scale, the time needed for a compact pile to
wall is ey, 2.5% 10" 3. The particles are thus almost com- be compact again after launching and subsequent la(gling

pletely inelastic. We have studied the motion of a singleOne can think ofr as “relaxation time” for the pile. Whenr
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FIG. 2. QuantityQ (top) that characterizes the dominance of a  F|G. 3. QuantitiesQ (top) and = (bottom) are shown fol = 3.
single mode and the relaxation time(bottom) are shown for sev-  Other parameters are the same as Fig. 2. There are four pe@ks in
eral values oH. The curve ofQ has been offset and rescaled for atH=1 (single-particle motio)) 6 (1/2 subharmonig 14 (1/3 sub-
clarity. Parameters are identical to those of Fig. 1. There are thregarmonig, and around 261/2 subharmonic Note thatr is close to
peaks inQ atH=1 (single-particle motion 12 (1/2 subharmonic 2T (3T) when a 1/2(1/3) subharmonic mode dominates.

and broad peak ne&t= 28 (1/2 subharmonic Note thatr is close )
to 2T when subharmonic modes dominate. three peaks forming a “w” shape. The number of the peaks,

and their locationsfl = 1,12,28), are what are expected from

becomes comparable to or even larger tliawe expect that Fig. 1. Note that the system shows broad resonances around
the motion of the pile can no longer be described by that oH =28. Such quality of agreement seems to be typical, which
a single particle. demonstrates the value Qf. We also calculate the relative

To make the idea more quantitative, we measurErom  contributions ofP(f,) and P(f,/2) to the power spectrum
the time seriesR(t), we locate the times at whicR(t) P(f), wheref, is the driving frequency. These contributions
reaches local minima. The interval between successivalso peak around the same locations of the peak3.of
minima is defined to ber. One should consider only the The key quantity that can be calculated frdngr) is 7
flights of initially compact piles. Some of the local minima [20]. At the bottom of Fig. 2, we show measured using the

correspond to a partially expanded state and should not be . —. .
used FT)o take thrft into gcco?mt | discard valueg ofhen parameters of Fig. 1. One can see tha indeed larger than

' L ! ; the period of the vibratiod =0.1 for mostH. Furthermore,
R(t) at the launching is larger than 20% of the MaxIMUM iice that the dominances of a single mode seem to occur
R(t). We calculate distributio®(7) from the resulting set 9

of 7. The resultingD(r) seems to be insensitive to a small When is close to an integer multiple df, besides smak
variation in the cutoff. (single-particle motion The dominance nedtd =28 occurs
When the motion of the pile is periodic, the particles arewhen7 is close to I, where the frequency of the dominant
launched at a specific phase of the vibration. One thus exnode is also Z. However, the dominance nebr=12 oc-
pects thatD(7) consists of a few sharp peaks. When thecurs near, but not exactly at, where becomes Z (H
motion becomes more chaotic, the particles are launched at-a10).
more irregular phase. The relaxation timebecomes more Based on these observations, we propose a possible
random and the peaks @i(7) broaden out. Thus one can mechanism for the dominance. When the pile, launched from
think of D(7) as a representation &(f) in temporal do- the bottom, comes back to collide with the bottom, there is
main. Sharply peake®(f) corresponds to sharply peaked still significant dispersion, and the pile becomes compact

D(7), broadP(f) to broadD(7). again only afterr. When 7 is an integer multiple off, we

We now quantify the dominance of a single mode. Wegypect the pile to repeat the same sequence of motions. Thus

define 7=nT is a condition for a single-mode dominance, and the

period of the motion i T.
Q2= 1 ffmaX(D(r)—S)zd - 3) The proposeq mechanism gets furthgr support by studying
Tmin the motion for different values df. In Fig. 3, we showQ
and r measured fol” = 3 while the other parameters remain
where the same. One can see four dominances: one particle motion
atH=1, two 1/2 subharmonicH=6, and around 26mo-

— 1 Tmax tions, and an one 1/3 subharmonitl £14) motion. Not

= L D(m)dr. 4 only the observed periodd/1, 1/2, and 1/8 but also the
order they appeafl/1, 1/2, 1/3, and 1/2, abl increases
Here, 7. (7may) IS the minimum(maximum) of measured seems to be rather complex. These can be understood easily

. The quantityQ measures deviation from a uniform distri- by looking at the corresponding The value ofr is indeed
bution. If the motion of the pile is periodi® () consists of close to I nearH =6, 26, where a 1/2 subharmonic mode
a few Sharp peaks ar@ is |arge_ For a chaotic motion, we dominates. However, there is Only one dominance of 1/3
expect smalQ. In the top part of Fig. 2, we sho® mea- subhgmonic mode nedt =14, compared to two expected
sured for the parameters of Fig. 1. The curve consists ofrom 7 (H~12 and 1. It is possible that the two nearby

Tmax— Tmin

Tmax~ Tmin ¥ min
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dominances merge to form a single one.JAincreases to 4 Finally, we discuss the conditions for observing the sub-

and 5, all of the dominances can again be explained from harmonic motion in an experiment. The amplitude and fre-
No dominance with a period larger thaff 3s observed. As quency used in the experiments of Thoneasl. are compa-

I is further increased, the dominance becomes much leggble to our simulationg13], but their results are quite
clear. different. The difference, we believe, is the coefficient of
We also study the effect df. We changd to 20 and 100 restitution. The typical value of used in the present simu-
while keeping the other parameters fixed. Fer20 andI’ lations is less than 0.1, while that of a typical experiment is
=2, Q assumes a “w” shape as in Fig. 2. The dispersion oflarger than 0.§15]. In order to check the idea, we repeat the

the file for f =20 is smaller than that df=10 at the samé'. simulation withe~0.8 for f=10 and"=2. The motion of
The decrease is more significant fior= 100, where the sys- the pile is indeed chaotic at a small depth, and it becomes
tematic variation ofR(t) is too small to be seen. This de- more coherent at a larger depth, just as in the experiments. It
crease is not unexpected. The expansion of the pile wag possible that the motion of a pile with smells similar to
shown to scale a#\f rather thanl’ [9-11]. Therefore, the  that of a taller pile with largee. In such a case, subharmonic

value of Af decreases afincreases for fixed'. motion could be observed in a taller pile with large
We argue that most aspects of the seemingly complex
depth dependence can be explained in terms. éfowever, We thank Joel Koplik and Yoon H. Hwang for useful

there are a few remaining questions. First, the origin of theliscussions and a critical reading of the manuscript. This
discrepancy on the location of dominances remains uncleawork is supported in part by the Department of Energy under
Second, it is not clear why only ari/subharmonic mode Grant No. DE-FG02-93-ER14327. One of (kL.) is sup-

with integern is observed. In principler can be made suit- Ported in part by SNU-CTP and the Korea Science and En-

able for, e.g., a 2/3 mode by carefully tunitf gineering Foundation through the Brain-Pool program.
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